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Abstract 

The aims of this study were to quantify the effects of factors such as mode of 

exercise, body composition and training on the relationship between heart rate 

and physical activity energy expenditure (measured in kJ x [min.sup.-1]) and to 

develop prediction equations for energy expenditure from heart rate. Regularly 

exercising individuals (n = 115; age 18-45 years, body mass 47-120 kg) 

underwent a test for maximal oxygen uptake (V[O.sub.2max] test), using 

incremental protocols on either a cycle ergometer or treadmill; V[O.sub.2max] 

ranged from 27 to 81 x ml [kg.sup.-1] x [min.sup.-1]. The participants then 



completed three steady-state exercise stages on either the treadmill (10 min) or 

the cycle ergometer (15 min) at 35%, 62% and 80% of V[O.sub.2max], 

corresponding to 57%, 77% and 90% of maximal heart rate. Heart rate and 

respiratory exchange ratio data were collected during each stage. A mixed-model 

analysis identified gender, heart rate, weight, V[O.sub.2max] and age as factors 

that best predicted the relationship between heart rate and energy expenditure. 

The model (with the highest likelihood ratio) was used to estimate energy 

expenditure. The correlation coefficient (r) between the measured and estimated 

energy expenditure was 0.913. The model therefore accounted for 83.3% 

([R.sup.2]) of the variance in energy expenditure in this sample. Because a

measure of fitness, such as V[O.sub.2max], is not always available, a model 

without V[O.sub.2max] included was also fitted. The correlation coefficient 

between the measured energy expenditure and estimates from the mixed model 

without V[O.sub.2max] was 0.857. It follows that the model without a fitness 

measure accounted for 73.4% of the variance in energy expenditure in this 

sample. Based on these results, we conclude that it is possible to estimate 

physical activity energy expenditure from heart rate in a group of individuals with 

a great deal of accuracy, after adjusting for age, gender, body mass and fitness. 

Keywords: Energy expenditure, physical activity, prediction equations 

Introduction 

During moderate physical activity, there is a linear relationship between heart 

rate and oxygen consumption. This heart rate--oxygen consumption relationship 

is subject to both intra- and inter-individual variability. Heart rate may be partially 

dissociated from energy expenditure by factors such as emotion, posture and 

environmental conditions (Hebestreit & Bar-Or, 1998). The relationship between 

heart rate and energy expenditure is linear only within a relatively narrow range 

of approximately 90-150 beats x [min.sup.-1] (the so-called "flex heart rate") 



during physical activity (Ceesay et al., 1989; Rennie, Hennings, Mitchell, & 

Wareham, 2001; Spurr et al., 1988). During light activity or inactivity, there is 

almost no slope to the relationship between heart rate and energy expenditure, 

and for the purpose of measuring energy expenditure from heart rate it is 

assumed that energy expenditure is equal to resting energy expenditure (Rennie 

et al., 2001). A non-linear, discontinuous function has been found to be more 

accurate than a linear relationship in predicting physical activity energy 

expenditure from heart rate (Li, Deurenberg, & Hautvast, 1993). 

Heart rate monitoring, for estimating free-living energy expenditure, has been 

extensively validated using indirect calorimetry, doubly labelled water and whole-

room respirometry, and reported differences between measures range from -20% 

to +25% (Luke, Maki, Barkey, Cooper, & McGee, 1997). In large groups of 

people, heart rate monitoring provides one of the most efficient and economical 

means of estimating energy expenditure. In addition, heart rate monitoring 

provides useful insights into the type of activity being undertaken over the 

measurement period. Other assessment methods, such as doubly labelled water, 

can only convey the total amount of physical activity measured, whereas heart 

rate monitoring provides physiological information about the type of activities 

being performed and describes the nature of day-to-day variability in energy 

expenditure (Hebestreit & Bar-Or, 1998; Luke et al., 1997). While whole-room 

respirometry and indirect calorimetry provide physiological information about the 

nature of the activity being performed, these tools are not only costly to maintain, 

but often take the participant out of his or her natural environment for the duration 

of the measurement period (Luke et al., 1997). 

In most previous studies investigating the use of heart rate in the prediction of 

energy expenditure, individual calibration of the heart rate-energy expenditure 

relationship was performed (Ceesay et al., 1989; Li et al., 1993; Luke et al., 1997; 

Spurr et al., 1988). Individual calibration requires that each participant complete a 



progressive exercise test, during which time heart rate is simultaneously 

measured, along with indirect calorimetry to estimate energy expenditure. Two 

recent studies have investigated free-living energy expenditure with heart rate 

monitoring utilizing prediction equations, generated on large samples of 

individuals, instead of an individual calibration test (Hiilloskorpi et al., 1999; 

Rennie et al., 2001). Hiilloskorpi et al. (1999) developed a prediction equation for 

energy expenditure from heart rate, using multiple regression analysis, on a 

sample of 87 healthy, active men and women. Factors found to have a significant 

interaction with energy expenditure included age, weight and gender. Mode of 

exercise (cycling versus running) did not contribute significantly to the model. 

In a more recent study, Rennie et al. (2001) developed a prediction model using 

a sample of 789 individuals. Factors found to have a significant effect on the 

relationship between heart rate and energy expenditure included sitting heart rate 

in addition to age, weight and gender. These variables were used to predict the 

slope and the intercept of the regression line between energy expenditure and 

heart rate. This energy expenditure equation was then further validated on an 

independent sample of 97 individuals and found to have a correlation coefficient 

(r) of 0.73. Rennie et al. (2001) demonstrated the utility of developing equations 

for estimating physical activity energy expenditure, from the heart rate-energy 

expenditure relationship in large, representative samples of individuals, with 

reasonable accuracy and the potential for wide application in epidemiological 

studies. 

The main aim of the present study was to further characterize the factors that 

influence the relationship between energy expenditure and heart rate during 

moderate to vigorous activity in regularly exercising persons. A second aim was 

to develop a prediction equation for energy expenditure from heart rate, adjusting 

for these factors. 



Methods 

Part 1: Developing the energy expenditure prediction equation 

Participants. The participants were recruited from a local fitness centre, group-

based exercise programmes, running clubs and cycle races. Altogether, 127 

regularly exercising men and women volunteered for the study (of which 115 had 

complete data). The participants were familiar either with a cycle ergometer or 

motor-driven treadmill, and ranged in age from 19 to 45 years. They were free 

from any known cardiac or metabolic disorders and were not currently taking any 

chronic medication. The physical characteristics of the participants are presented 

in Table I. The participants were tested on two occasions, after self-selecting the 

mode of exercise (cycle ergometer, n = 69; treadmill, n = 46). The Ethics and 

Research Committee of the University of Cape Town, Faculty of Health Sciences, 

approved the study and informed consent was obtained from all participants 

before the trials began.

A second sample of regularly exercising individuals (n = 17) was subsequently 

recruited, independent of the first sample, to test the validity of the prediction 

model. The second sample was recruited from a local fitness centre, and 

represented a wide range of ages (21-53 years), weights (51105 kg) and fitness 

(V[O.sub.2max] = 34-74.3 ml x [kg.sup.-1] x [min.sup.1]). 

Body composition. Body fatness was expressed as the sum of seven skinfolds 

(biceps, triceps, subscapular, suprailiac, anterior thigh, abdominal and medial 

calf). Percentage body fat was estimated using the equations of Dumin and 

Womersley (1974). 

Maximal oxygen consumption. During the first visit to the laboratory, maximal 

oxygen consumption (V[O.sub.2max), maximal heart rate, and peak power output 



or peak treadmill running speed were measured. Maximal oxygen uptake was 

measured during either a progressive treadmill or cycle test to exhaustion. During 

the treadmill test, the starting treadmill speed was 12 km x [h.sup.-1] for the men 

and 10 km x [h.sup.-1] for the women, and it was increased by 0.5 km x [h.sup.-1] 

every 30 s until volitional exhaustion, as described previously (Noakes, Myburgh, 

& Schall, 1990). In the cycle test to exhaustion, participants were tested on an 

electronically braked cycle ergometer (Lode, Gronigen, The Netherlands). Each 

participant started cycling at an exercise intensity of 3.33 W x [kg.sup.-1] body 

weight for 150 s, after which the work rate was increased by 50 W for a further 

150 s. The exercise intensity was then increased by 25 W every 150 s up to the 

point of exhaustion (Hawley & Noakes, 1992). Maximal heart rate was defined as 

that heart rate achieved at the point of exhaustion. During both the treadmill and 

cycle tests, the participants wore a facemask attached to an Oxycon Alpha 

automated gas analyser (Oxycon, Jaeger, The Netherlands). Before each test, 

the gas analyser was calibrated using a Hans Rudolph 5530 3-litre syringe and a 

two-point calibration technique, using a 5% C[O.sub.2]/95% [N.sub.2] gas 

mixture and fresh air. The rate of oxygen consumption (V[O.sub.2]), rate of 

carbon dioxide production (VC[O.sub.2]) and the respiratory exchange ratio 

(RER) were calculated using conventional equations (Weir, 1990). Peak power 

output and peak treadmill running speed were defined as the workload at which 

the participant could no longer maintain the pace of the treadmill or maintain a 

cadence of 70 rev x [min.sup.-1]. 

Submaximal testing and estimation of energy expenditure. The participants 

returned to the laboratory within a week and performed a submaximal test. The 

cycle ergometer submaximal test protocol consisted of three consecutive 

workloads, each lasting 15 min, during which the participants cycled at 25%, 55% 

and 70% of the previously determined peak power output, corresponding to 41%, 

63% and 80% of V[O.sub.2max] respectively. The submaximal treadmill protocol 

consisted of three consecutive workloads, each lasting 10 min, at 35%, 50% and 



70% (corresponding to approximately 41%, 63% and 80% of V[O.sub.2max] 

respectively) of previously determined peak treadmill running speed. Minute-to-

minute heart rate was recorded using the Polar Vantage heart rate monitor (Polar 

Electro, Finland) and respiratory exchange measurements (V[O.sub.2] and 

VC[O.sub.2]) were collected and used to estimate energy expenditure, based on 

the equations of Weir (1990), during the last 5 min of each of the stages. The 

submaximal heart rate data from the last 5 min of each stage were used to 

subsequently calculate predicted energy expenditure on the basis of individual 

regression equations. Factors that were significantly correlated with heart rate or 

V[O.sub.2] were used in the model to predict energy expenditure. 

Part 2: Validation of prediction model on an independent sample 

For the purpose of validation, the energy expenditure values from a 20-min self-

selected cardiovascular session were predicted on an independent sample of 

individuals, recruited from a local fitness centre. These participants were 

instructed to choose either a single 20-min cardiovascular workout or two 10-min 

exercise bouts. 

Participants. The 17 participants (9 males, 8 females) were free from known 

cardiovascular and metabolic disorders and took part in some form of 

cardiovascular physical activity at least three times a week. The participants met 

the inclusion criteria of the original study and their physical characteristics are 

presented in Table II. 

Body composition and maximal test to exhaustion. The participants reported to 

the laboratory on two different occasions within 7 days. During their first visit, the 

participants had their body composition measured using the near infrared 

reactance technique (Futrex Inc., Gaithersburg, MD, USA). They then performed 

a maximal test to exhaustion on an electronically braked cycle ergometer (Lode, 



Gronigen, The Netherlands) as previously described (Hawley & Noakes, 1992). 

During the test, oxygen consumption and carbon dioxide productions were 

measured as described above. 

Estimation of physical activity energy expenditure. During the second visit, the 

participants reported to the laboratory in a 2-h post-prandial state. They were 

instructed not to engage in any strenuous physical activity during the preceding 

24 h. All participants completed a 20-min cardiovascular exercise session as part 

of an independent study in progress. The cardiovascular component was 

performed following a 5-min warm-up consisting of 23 min of walking and 2-3 min 

of light jogging. The participants then chose to either complete one 20min 

continuous cardiovascular exercise session or two 10-min sessions on a self-

selected piece of fitness centre equipment. Throughout the exercise session, the 

participants' heart rate, V[O.sub.2] and VC[O.sub.2] were monitored continuously 

using the [K4b.sup.2] portable gas analyser (Cosmed, Italy). Minute-by-minute 

energy expenditure (kJ x [min.sup.-1]) was then determined using the non-protein 

caloric equivalents for oxygen. Before each test, the portable gas analyser was 

calibrated using a Hans Rudolph 5530 3-1itre syringe and a two-point calibration 

technique, using a 5% C[O.sub.2].sub.1]/16% [0.sub.2] gas mixture and fresh air. 

The analyser outputs were processed to calculate breath-by-breath ventilation, 

V[O.sub.2], VC[O.sub.2] and the respiratory exchange ratio using conventional 

equations (Weir, 1990). 

Statistical analysis 

Initially, 127 individuals volunteered to participate in the study. The final sample 

size was 115 because of incomplete heart rate and V[O.sub.2max] for 12 

participants. The initial exploratory data analyses to determine factors that may 

have significantly contributed to the relationship between heart rate and energy 

expenditure included Box plots and scatter plots for all variables (not shown). 



Univariate (means, standard deviations) and bivariate (correlation coefficients) 

summary statistics were then calculated for all variables. 

Based on these analyses, we fitted a mixed model for predicting energy 

expenditure. The factors gender, weight, age and V[O.sub.2max] were modelled 

as fixed effects, and participants as random effects, with three repeated 

measurements of energy expenditure (and fixed heart rate) for each participant. 

In the model, the covariance matrix between the measurements for each 

participant was unstructured and compound symmetry was assumed for the 

covariances between participants. 

A second mixed model was fitted under the rationale that, in certain settings, a 

test of maximal oxygen consumption might be impractical or not available. The 

second model included all the variables and assumptions in the original model 

except V[O.sub.2max]. For inner validation, both models were tested on an 

independent sample of participants (n = 17), who completed 20 min of 

cardiovascular exercise. 

The initial exploratory analyses were performed using the Statistica data analysis 

software system (version 6.1, Statsoft, Southern Africa Inc., 2002). Statistical 

modelling was done with SAS[R] Proprietary Software Release 8.2 (USA). 

Results 

Characteristics of sample used to develop the prediction equation 

The characteristics of the participants are presented in Table I. The participants 

represented a wide range of morphology and fitness: age 19-45 years of age, 

body weight 47-116 kg, percentage body fat 4.8-37.8% and V[O.sub.2max] 27-81 

ml x [kg.sup.-1] x [min.sup.-1]. There were no differences in mean age, weight, 



percentage body fat or V[O.sub.2max] between the participants who underwent 

treadmill testing versus those that underwent cycle ergometer testing. There 

were significant differences in weight, percentage body fat and V[O.sub.2max] 

between the sexes (Table I, P < 0.00001). 

Characteristics of sample used for inner validation 

The characteristics of the participants are presented in Table II. The participants 

in this sample were similar to those used in the original study and represented a 

broad range in body composition. Percentage body fat ranged from 9.4 to 21.6% 

in the men and from 21.6 to 30.6 % in the women. Similarly, there was a wide 

range in the performance data, with V[O.sub.2max] ranging from 38.7 to 73.8 ml 

x [kg-.sup.-1] x [min.sup.-1] in the men and from 34.3 to 49.6 ml x [kg.sup.-1] x 

[min.sup.-1] in the women. 

The participants in both samples were equally matched for age and weight. The 

participants (males and females combined) in the original study were slightly fitter 

(mean V[O.sub.2max] 53.5 [+ or -] 0.5 ml. [kg-.sup.-1]. [min.sup.-1]) than those 

who took part in the validation study (mean V[O.sub.2max] 48.1 [+ or -] 0.5 ml x 

[kg.sup.-1] x [min.sup.-1]); this difference was not statistically significant. 

Prediction equations of energy expenditure from heart rate: Mixed-model analysis

A mixed model was used to derive the following equation for predicting physical 

activity energy expenditure (EE): 

EE = -59.3954 + gender x (-36.3781 + 0.271 x age + 0.394 x weight + 0.404 

V[O.sub.2max] + 0.634x heart rate) + (1 - gender) x (0.274 x age + 0.103x weight 

+ 0.380x V[O.sub.2max] + 0.450 x heart rate) 



where gender = 1 for males and 0 for females. Table III shows the above model 

in a different format. The likelihood ratio test for goodness-of-fit [chi square] = 

262.73 on five degrees of freedom with P < 0.0001. The results of type III tests 

for the fixed effects in the mixed model are presented in Table IV. The degrees of 

freedom for the F-tests were calculated using Satterthwaite's method. 

In Figure 1, the measured energy expenditure is regressed against estimated 

energy expenditure. The correlation coefficient (r) is 0.913, so [R.sup.2] = 83.3% 

of the variation in measured energy expenditure in the sample is explained by the 

model. 

[FIGURE 1 OMITTED] 

A second model, which contained no measure of fitness, was also fitted. The final 

prediction equation for energy expenditure using age, gender, weight and heart 

rate was: 

EE = gender x (-55.0969 + 0.6309 x heart rate + 0.1988 x weight + 0.2017 x age) 

+ (1 - gender) x (-20.4022 + 0.4472 x heartrate - 0.1263 x weight + 0.074 x age) 

where gender = 1 for males and 0 for females. Table V shows the above model 

in a different format. The likelihood ratio test for goodness-of-fit [chi square] = 

360.68 on five degrees of freedom with P < 0.0001. The results of type III tests 

for the fixed effects in the mixed model are given in Table VI. The degrees of 

freedom for the F-tests were calculated using Satterthwaite's method. 

In Figure 2, the measured energy expenditure is regressed against estimated 

energy expenditure. The coefficient of correlation 0.857, so [R.sup.2] = 73.4% of 

the variation in measured energy expenditure in the sample is explained by the 

model. 



[FIGURE 2 OMITTED] 

Independent sample analysis for inner validation 

Data from an independent sample of 17 participants (8 females, 9 males) were 

used to validate both models. Predicted energy expenditure using the first model, 

which included a measure of fitness (V[O.sub.2max]), correlated with measured 

energy expenditure during self-selected cardiovascular fitness training (r = 0.836, 

P < 0.0001; Figure 3). Using the second model for measuring energy 

expenditure, with no measure of fitness, the correlation coefficient was 0.77 (P < 

0.0001) (Figure 4). 

[FIGURE 3-4 OMITTED] 

Agreement 

Because we used a mixed model (with random participant effects), we had to use 

maximum likelihood estimation instead of least squares. The result is that even 

the estimates for the initial sample which was used to develop the equations are 

slightly biased. The bias of the estimates and their random variation for the four 

sets of estimates are summarized in Table VII. The bias is the difference 

between the predicted and the corresponding actual value of energy expenditure, 

and the 95% limits of absolute agreement were calculated as described in 

Atkinson and Nevill (1998). It is interesting to note that the bias in the initial 

sample is on average in the opposite direction to that for the validation sample. 

The fact that the agreement limits become wider down the table is completely 

logical. We believe that these limits are narrow enough for the underlying models 

to be of practical use. 



Discussion 

In this study, we demonstrated that physical activity energy expenditure during 

moderate- to high-intensity exercise may be predicted with good accuracy in a 

group of individuals varying widely in age, fitness and morphology, without the 

need for individual calibration. This study denotes an improvement over existing 

studies in the estimation of physical activity energy expenditure using heart rate 

monitoring. The proposed model (using heart rate, age, weight, gender and level 

of fitness V[O.sub.2max])) accounted for 70% of the variation in observed energy 

expenditure in an independent sample of people completing a self-selected 20-

min cardiovascular exercise session. 

Previous studies (Li et al., 1993; Rutgers, Klijn, & Deurenberg, 1997) have cited 

poor agreement between energy expenditure estimated using heart rate 

monitoring and measured energy expenditure. These prediction equations were 

developed on small samples, not representative of the population to which the 

equation was to be applied. Rutgers et al. (1997) developed a prediction equation 

based on the heart rate and energy expenditure data acquired from 13 elderly 

individuals. The authors concluded that the use of heart rate monitoring to 

measure energy expenditure was inaccurate over 3 days of measurement, citing 

large discrepancies between energy expenditure estimation using the individual 

calibration curve and a group curve. Li et al. (1993) also reported poor agreement 

for the estimation of energy expenditure using heart rate monitoring between 

group and individually derived estimates. Once again, this sample was relatively 

small, consisting of only 40 persons. 

The current study represents an improvement over existing studies (Hiilloskorpi 

et al., 1999; Rennie et al., 2001) that used heart rate monitoring to estimate 

physical activity energy expenditure, without individual calibration. Previously, 

Rennie et al. (2001) used the variables that significantly interacted with energy 



expenditure to predict the slope, intercept and the heart rate flex point for 

measured versus predicted physical activity energy expenditure. In that study, 

the variables of sitting heart rate, age, weight and gender were found to have a 

significant impact on the slope, intercept and heart rate flex point. These 

investigators were then able to use the slope and intercept of the linear model to 

place 98% of the participants in their sample in either the same or adjacent 

quartiles for the measured and estimated physical activity levels. Their model has 

implications for physical activity classification in epidemiological models. In the 

current study, we derived linear equations, based on mixed-model analyses. 

These equations yield predictions that correlate significantly with the test sample 

as well as the independent validation sample. 

Previously, Hiilloskorpi et al. (1999) developed an equation to predict energy 

expenditure using the variables of heart rate, age, weight and gender. They 

showed that the mode of exercise, cycling versus running, did not significantly 

affect the final prediction of energy expenditure. We also found that the mode of 

exercise did not affect the estimation of energy expenditure, and therefore 

suggest that the proposed equation may be used for both running and cycling 

activities. During our inner validation study, we even found good agreement with 

other models of continuous activity, such as stationary rowing ergometry and 

stationary stair-climbing activities. 

Hiilloskorpi et al. (1999) did not include any measure of physical fitness or 

V[O.sub.2max] in their prediction equation, citing a need to produce an equation 

for estimating energy expenditure independent of laboratory testing. We found 

that when a measure of the level of cardiorespiratory fitness such as 

V[O.sub.2max] is included, the accuracy of the prediction improved. The 

correlation coefficients (r) of the study sample were 0.913 for the model 

V[O.sub.2max] with and 0.857 for the model without V[O.sub.2max]. The 

increase in variation explained by the model including V[O.sub.2max] is 83.4%-



73.4% = 10%. The correlation coefficients of the validation sample were 0.836 for 

the model with V[O.sub.2max] and 0.77 for the model without V[O.sub.2max]. 

The increase in variation explained by the model including V[O.sub.2max] is 

approximately 10%. It is well known that training results in adaptations in the 

heart rate response to increasing workloads (Meijer, Westerterp, & Verstappen, 

1999; Wilmore et al., 1996). Therefore, it is not surprising that an indirect 

measure of cardiorespiratory fitness improves the accuracy of the prediction of 

energy expenditure from heart rate. This finding is in line with the study of Rennie 

et al. (2001), in which sitting heart rate was found to play a significant role in the 

prediction of energy expenditure from heart rate monitoring. Rennie et al. (2001) 

proposed that resting heart rate when sitting was a useful proxy measurement for 

fitness, since previous studies have found an inverse association between resting 

tachycardia and maximal exercise capacity (Blair, Kannel, Kohl, Goodyear, & 

Wilson, 1989), as well as a positive relationship between regular participation in 

physical activity and lower resting heart rate, independent of age (Steinhaus et 

al., 1988). 

Hiilloskorpi et al. (1999) found that including age in the regression model did not 

significantly improve the variance. This is at odds with the current study, as we 

found that age did contribute significantly to the final mixed model. This 

difference may partly be explained by differences in sample characteristics. 

Hiilloskorpi et al. (1999) acknowledges a relatively narrow age range, with few 

participants older than 50 years or younger than 25 years. In our study, the mean 

age of the 72 men was 31 years (range 19-50 years) and that of the 43 women 

was 30 years (range 22-44 years). In the study of Hiilloskorpi et al. (1999), the 

mean age of the 45 men was 40 years and that of the 43 women was 38 years. 

Their participants were notably older than those in the current study. In addition 

to the age discrepancies between the two studies, there were also discrepancies 

between the fitness of the two samples. In the current study, the mean 

V[O.sub.2max] for the men was 59.2 ml x [min.sup.-1] x [kg.sup.-1] and for the 



women it was 45.7 59.2 ml x [min.sup.-1] x [kg.sup.-1]; in the study of Hiilloskorpi 

et al. (1999), the mean values were 48.5 and 39.5 ml x [min.sup.-1] x [kg.sup.-1] 

for the men and women respectively. These demographic differences may partly 

account for the differences found between the two prediction models. Rennie et 

al. (2001) also found that age impacted in the regression model of physical 

activity energy expenditure from heart rate. It may be argued that the sample 

used to generate the prediction equation comprised a well-trained group of 

individuals, but we feel that they represented a typical fitness centre population. 

Maximal oxygen uptake ranged from 27.0 to 64.1 ml x [min.sup.-1] x [kg.sup.-1] 

in the women and from 38.0 to 81.4 ml x [min.sup.-1] x [kg.sup.-1] in the men. It 

was the intention of the present study to apply this equation to the general 

exercising population and, as a result, our recruitment focused on a local fitness 

centre, amateur running clubs and cycling races. While our average fitness levels 

were unlike those presented in both Hiilloskorpi et al. (1999) and Rennie et al. 

(2001), we have demonstrated that the inclusion of V[O.sub.2max], as a proxy for 

fitness, improves the predictability of our group-based equation. 

While many other studies (Hiilloskorpi et al., 1999; Li et al., 1993; Rennie et al., 

2001; Strath et al., 2000) have used similar approaches to develop prediction 

equations without individual calibration, not all of them (Hiilloskorpi et al., 1999; 

Strath et al., 2000) used an independent sample for inner validation of the 

developed model and, in some cases, did not report inner validation of the 

developed model (Strath et al., 2000) or used the same sample for which the 

original prediction equation was developed (Hiilloskorpi et al., 1999). This may 

lead to elevated levels of agreement between the prediction models and 

measured estimates, due to the homogeneous nature of samples. For example, 

Strath et al. (2000) estimated physical activity during moderate-intensity exercise 

using heart rate monitoring and reported good agreement (r = 0.87) between 

measured and estimated energy expenditure; however, in this study, no inner 

validation was performed on an independent sample of participants. Conversely, 



Rennie et al. (2001) validated a prediction equation for physical activity levels, 

developed on a sample of 789 individuals, on a smaller subset of 97 individuals. 

During this inner validation, 98% of the subset was placed in the same or 

adjacent quartiles during comparison of measured and estimated physical activity 

levels. In the current study, we found good agreement on an independent sample 

of participants. The prediction equation explained 71% of the variance in 

estimated energy expenditure in an independent sample, during self-selected 

cardiovascular exercise training. 

Finally, for practical application the proposed equations represent an 

improvement in the estimation of energy expenditure from heart rate over existing 

equations. They may be used in large population-based studies for health 

purposes. Further research is needed on the simultaneous measurement of 

physical activity energy expenditure and heart rate. Predictive equations that 

estimate energy expenditure for health research and promotion are required for a 

wider variety of activities, particularly for intermittent activity or activity conducted 

at lower intensities. 

Table I. Characteristics of the sample used to 

develop the prediction equation (mean [+ or -] s) 

  

                                      Treadmill 

  

                        Men (n = 22)       Women (n = 24) 

  

Age (years)             30 [+ or -] 7       30 [+ or -] 6 

  

Weight (kg) *           76 [+ or -] 10      66 [+ or -] 11 

  

Percent body fat *    14.5 [+ or -] 4.8   26.8 [+ or -] 5.2 

  

V[O.sub.2max] (ml x 



  [kg.sup.-1] x 

  [min.sup.-1]) *     65.0 [+ or -] 8.6   49.0 [+ or -] 9.7 

  

Maximal heart 

  rate (beats x 

  [min.sup.-1])        189 [+ or -] 9      184 [+ or -] 9 

  

                                  Cycle ergometer 

  

                        Men (n = 50)       Women (n = 19) 

  

Age (years)             31 [+ or -] 6        31 [+ or -] 6 

  

Weight (kg) *           81 [+ or -] 13       62 [+ or -] 6 

  

Percent body fat *    16.6 [+ or -] 4.2    23.1 [+ or -] 5.0 

  

V[O.sub.2max] (ml x 

  [kg.sup.-1] x 

  [min.sup.-1]) *     55.3 [+ or -] 8.3    48.3 [+ or -] 8.1 

  

Maximal heart 

  rate (beats x 

  [min.sup.-1])        187 [+ or -] 11      185 [+ or -] 9 

  

* P < 0.00001, differences between the sexes. 

  

Table II. Characteristics of the sample used 

for inner validation (mean [+ or -] s) 

  

                         Men (n = 9)         Women (n = 8) 

  

Age (years)             29 [+ or -] 8        34 [+ or -] 10 

Weight (kg) *           81 [+ or -] 14       62 [+ or -] 9 

Percent body fat *    14.8 [+ or -] 5.1    26.0 [+ or -] 3.9 

V[O.sub.2max]  

  (ml x [kg.sup.-1] 



  x [min.sup.-1]) *   54.3 [+ or -] 11.4   42.4 [+ or -] 5.4 

Maximal heart 

  rate (beats x 

  [min.sup.-1])        190 [+ or -] 9       178 [+ or -] 15 

  

* P < 0.00001, differences between the sexes. 

  

Table III. The estimates and their standard 

errors for the fixed effects of the model 

including fitness 

  

                        Men                    Women 

  

                            Standard               Standard 

Effect          Estimate     error     Estimate     error 

  

Intercept       -95.7735      9.5734   -59.3954     17.1314 

Heart rate        0.6344      0.0137     0.4498      0.0165 

Weight            0.3942      0.0642     0.1032      0.1166 

V[O.sup.2max]     0.4044      0.0837     0.3802      0.1575 

Age               0.2713      0.1120     0.2735      0.2087 

  

Table IV. Table with type III analysis for fixed 

effects of model including fitness 

  

                         Degrees of 

Effect                    freedom     F-value   P-value 

  

Gender                     2, 109       56.05   < 0.0001 

Heart rate x gender        2, 125     1444.98   < 0.0001 

Weight x gender            2, 100       19.23   < 0.0001 

V[O.sub.2max] x gender     2, 101       14.57   < 0.0001 

Age x gender               2, 101        3.79     0.0258 

  

Table V. The estimates and their standard errors for the 

fixed effects of the mixed model without fitness 

  



                      Men                   Women 

  

                         Standard              Standard 

Effect        Estimate    error     Estimate    error 

  

Intercept     -55.0969     5.5780   -20.4022     7.2318 

Heart rate      0.6309     0.0137     0.4472     0.0165 

Weight          0.1988     0.0619    -0.1263     0.1061 

Age             0.2017     0.1180     0.0740     0.1742 

  

Table VI. Results of type III tests for fixed 

effects of model excluding fitness. 

  

                      Degrees of 

Effect                 freedom     F-value   P-value 

  

Gender                  2, 109       14.43     0.0002 

Heart rate x gender     2, 125     1428.63   < 0.0001 

Weight x gender        2, 99.9        5.86     0.0039 

Age x gender            2, 100        1.55     0.2170 

  

Table VII. Summary of the bias of the energy 

expenditure (in kJ x [min.sup.-1]) estimates 

and their random variation for the four sets 

of estimates 

  

                                         Standard 

Sample       Model               Mean    deviation 

  

Initial      Including fitness   -1.06     7.83 

Initial      No fitness          -5.79     9.85 

Validation   Including fitness    8.19     9.19 

Validation   No fitness           6.27     9.65 

  

Sample          95% limits of agreement 

  

Initial           -16.41         14.28 



Initial           -25.10         13.52 

Validation         -9.83         26.21 

Validation        -12.65         25.19 

  

Note: The bias is the difference between the 

predicted and the corresponding actual value 

of energy expenditure. 
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Abstract 

The aims of this study were to quantify the effects of factors such as mode of 

exercise, body composition and training on the relationship between heart rate 

and physical activity energy expenditure (measured in kJ x [min.sup.-1]) and to 

develop prediction equations for energy expenditure from heart rate. Regularly 

exercising individuals (n = 115; age 18-45 years, body mass 47-120 kg) 

underwent a test for maximal oxygen uptake (V[O.sub.2max] test), using 

incremental protocols on either a cycle ergometer or treadmill; V[O.sub.2max] 

ranged from 27 to 81 x ml [kg.sup.-1] x [min.sup.-1]. The participants then 

completed three steady-state exercise stages on either the treadmill (10 min) or 

the cycle ergometer (15 min) at 35%, 62% and 80% of V[O.sub.2max], 



corresponding to 57%, 77% and 90% of maximal heart rate. Heart rate and 

respiratory exchange ratio data were collected during each stage. A mixed-model 

analysis identified gender, heart rate, weight, V[O.sub.2max] and age as factors 

that best predicted the relationship between heart rate and energy expenditure. 

The model (with the highest likelihood ratio) was used to estimate energy 

expenditure. The correlation coefficient (r) between the measured and estimated 

energy expenditure was 0.913. The model therefore accounted for 83.3% 

([R.sup.2]) of the variance in energy expenditure in this sample. Because a 

measure of fitness, such as V[O.sub.2max], is not always available, a model 

without V[O.sub.2max] included was also fitted. The correlation coefficient 

between the measured energy expenditure and estimates from the mixed model 

without V[O.sub.2max] was 0.857. It follows that the model without a fitness 

measure accounted for 73.4% of the variance in energy expenditure in this 

sample. Based on these results, we conclude that it is possible to estimate 

physical activity energy expenditure from heart rate in a group of individuals with 

a great deal of accuracy, after adjusting for age, gender, body mass and fitness. 

Keywords: Energy expenditure, physical activity, prediction equations 

Introduction 

During moderate physical activity, there is a linear relationship between heart 

rate and oxygen consumption. This heart rate--oxygen consumption relationship 

is subject to both intra- and inter-individual variability. Heart rate may be partially 

dissociated from energy expenditure by factors such as emotion, posture and 

environmental conditions (Hebestreit & Bar-Or, 1998). The relationship between 

heart rate and energy expenditure is linear only within a relatively narrow range 

of approximately 90-150 beats x [min.sup.-1] (the so-called "flex heart rate") 

during physical activity (Ceesay et al., 1989; Rennie, Hennings, Mitchell, & 

Wareham, 2001; Spurr et al., 1988). During light activity or inactivity, there is 



almost no slope to the relationship between heart rate and energy expenditure, 

and for the purpose of measuring energy expenditure from heart rate it is 

assumed that energy expenditure is equal to resting energy expenditure (Rennie 

et al., 2001). A non-linear, discontinuous function has been found to be more 

accurate than a linear relationship in predicting physical activity energy 

expenditure from heart rate (Li, Deurenberg, & Hautvast, 1993). 

Heart rate monitoring, for estimating free-living energy expenditure, has been 

extensively validated using indirect calorimetry, doubly labelled water and whole-

room respirometry, and reported differences between measures range from -20% 

to +25% (Luke, Maki, Barkey, Cooper, & McGee, 1997). In large groups of 

people, heart rate monitoring provides one of the most efficient and economical 

means of estimating energy expenditure. In addition, heart rate monitoring 

provides useful insights into the type of activity being undertaken over the 

measurement period. Other assessment methods, such as doubly labelled water, 

can only convey the total amount of physical activity measured, whereas heart 

rate monitoring provides physiological information about the type of activities 

being performed and describes the nature of day-to-day variability in energy 

expenditure (Hebestreit & Bar-Or, 1998; Luke et al., 1997). While whole-room 

respirometry and indirect calorimetry provide physiological information about the 

nature of the activity being performed, these tools are not only costly to maintain, 

but often take the participant out of his or her natural environment for the duration 

of the measurement period (Luke et al., 1997). 

In most previous studies investigating the use of heart rate in the prediction of 

energy expenditure, individual calibration of the heart rate-energy expenditure 

relationship was performed (Ceesay et al., 1989; Li et al., 1993; Luke et al., 

1997; Spurr et al., 1988). Individual calibration requires that each participant 

complete a progressive exercise test, during which time heart rate is 

simultaneously measured, along with indirect calorimetry to estimate energy 



expenditure. Two recent studies have investigated free-living energy expenditure 

with heart rate monitoring utilizing prediction equations, generated on large 

samples of individuals, instead of an individual calibration test (Hiilloskorpi et al., 

1999; Rennie et al., 2001). Hiilloskorpi et al. (1999) developed a prediction 

equation for energy expenditure from heart rate, using multiple regression 

analysis, on a sample of 87 healthy, active men and women. Factors found to 

have a significant interaction with energy expenditure included age, weight and 

gender. Mode of exercise (cycling versus running) did not contribute significantly 

to the model. 

In a more recent study, Rennie et al. (2001) developed a prediction model using 

a sample of 789 individuals. Factors found to have a significant effect on the 

relationship between heart rate and energy expenditure included sitting heart rate 

in addition to age, weight and gender. These variables were used to predict the 

slope and the intercept of the regression line between energy expenditure and 

heart rate. This energy expenditure equation was then further validated on an 

independent sample of 97 individuals and found to have a correlation coefficient 

(r) of 0.73. Rennie et al. (2001) demonstrated the utility of developing equations 

for estimating physical activity energy expenditure, from the heart rate-energy 

expenditure relationship in large, representative samples of individuals, with 

reasonable accuracy and the potential for wide application in epidemiological 

studies. 

The main aim of the present study was to further characterize the factors that 

influence the relationship between energy expenditure and heart rate during 

moderate to vigorous activity in regularly exercising persons. A second aim was 

to develop a prediction equation for energy expenditure from heart rate, adjusting 

for these factors. 

Methods 



Part 1: Developing the energy expenditure prediction equation 

Participants. The participants were recruited from a local fitness centre, group-

based exercise programmes, running clubs and cycle races. Altogether, 127 

regularly exercising men and women volunteered for the study (of which 115 had 

complete data). The participants were familiar either with a cycle ergometer or 

motor-driven treadmill, and ranged in age from 19 to 45 years. They were free 

from any known cardiac or metabolic disorders and were not currently taking any 

chronic medication. The physical characteristics of the participants are presented 

in Table I. The participants were tested on two occasions, after self-selecting the 

mode of exercise (cycle ergometer, n = 69; treadmill, n = 46). The Ethics and 

Research Committee of the University of Cape Town, Faculty of Health 

Sciences, approved the study and informed consent was obtained from all 

participants before the trials began.

A second sample of regularly exercising individuals (n = 17) was subsequently 

recruited, independent of the first sample, to test the validity of the prediction 

model. The second sample was recruited from a local fitness centre, and 

represented a wide range of ages (21-53 years), weights (51105 kg) and fitness 

(V[O.sub.2max] = 34-74.3 ml x [kg.sup.-1] x [min.sup.1]). 

Body composition. Body fatness was expressed as the sum of seven skinfolds 

(biceps, triceps, subscapular, suprailiac, anterior thigh, abdominal and medial 

calf). Percentage body fat was estimated using the equations of Dumin and 

Womersley (1974). 

Maximal oxygen consumption. During the first visit to the laboratory, maximal 

oxygen consumption (V[O.sub.2max), maximal heart rate, and peak power 

output or peak treadmill running speed were measured. Maximal oxygen uptake 



was measured during either a progressive treadmill or cycle test to exhaustion. 

During the treadmill test, the starting treadmill speed was 12 km x [h.sup.-1] for 

the men and 10 km x [h.sup.-1] for the women, and it was increased by 0.5 km x 

[h.sup.-1] every 30 s until volitional exhaustion, as described previously (Noakes, 

Myburgh, & Schall, 1990). In the cycle test to exhaustion, participants were 

tested on an electronically braked cycle ergometer (Lode, Gronigen, The 

Netherlands). Each participant started cycling at an exercise intensity of 3.33 W x 

[kg.sup.-1] body weight for 150 s, after which the work rate was increased by 50 

W for a further 150 s. The exercise intensity was then increased by 25 W every 

150 s up to the point of exhaustion (Hawley & Noakes, 1992). Maximal heart rate 

was defined as that heart rate achieved at the point of exhaustion. During both 

the treadmill and cycle tests, the participants wore a facemask attached to an 

Oxycon Alpha automated gas analyser (Oxycon, Jaeger, The Netherlands). 

Before each test, the gas analyser was calibrated using a Hans Rudolph 5530 3-

litre syringe and a two-point calibration technique, using a 5% C[O.sub.2]/95%

[N.sub.2] gas mixture and fresh air. The rate of oxygen consumption 

(V[O.sub.2]), rate of carbon dioxide production (VC[O.sub.2]) and the respiratory 

exchange ratio (RER) were calculated using conventional equations (Weir, 

1990). Peak power output and peak treadmill running speed were defined as the 

workload at which the participant could no longer maintain the pace of the 

treadmill or maintain a cadence of 70 rev x [min.sup.-1]. 

Submaximal testing and estimation of energy expenditure. The participants 

returned to the laboratory within a week and performed a submaximal test. The 

cycle ergometer submaximal test protocol consisted of three consecutive 

workloads, each lasting 15 min, during which the participants cycled at 25%, 55% 

and 70% of the previously determined peak power output, corresponding to 41%, 

63% and 80% of V[O.sub.2max] respectively. The submaximal treadmill protocol 

consisted of three consecutive workloads, each lasting 10 min, at 35%, 50% and 

70% (corresponding to approximately 41%, 63% and 80% of V[O.sub.2max] 



respectively) of previously determined peak treadmill running speed. Minute-to-

minute heart rate was recorded using the Polar Vantage heart rate monitor (Polar 

Electro, Finland) and respiratory exchange measurements (V[O.sub.2] and 

VC[O.sub.2]) were collected and used to estimate energy expenditure, based on 

the equations of Weir (1990), during the last 5 min of each of the stages. The 

submaximal heart rate data from the last 5 min of each stage were used to 

subsequently calculate predicted energy expenditure on the basis of individual 

regression equations. Factors that were significantly correlated with heart rate or 

V[O.sub.2] were used in the model to predict energy expenditure. 

Part 2: Validation of prediction model on an independent sample 

For the purpose of validation, the energy expenditure values from a 20-min self-

selected cardiovascular session were predicted on an independent sample of 

individuals, recruited from a local fitness centre. These participants were 

instructed to choose either a single 20-min cardiovascular workout or two 10-min 

exercise bouts. 

Participants. The 17 participants (9 males, 8 females) were free from known 

cardiovascular and metabolic disorders and took part in some form of 

cardiovascular physical activity at least three times a week. The participants met 

the inclusion criteria of the original study and their physical characteristics are 

presented in Table II. 

Body composition and maximal test to exhaustion. The participants reported to 

the laboratory on two different occasions within 7 days. During their first visit, the 

participants had their body composition measured using the near infrared 

reactance technique (Futrex Inc., Gaithersburg, MD, USA). They then performed 

a maximal test to exhaustion on an electronically braked cycle ergometer (Lode, 

Gronigen, The Netherlands) as previously described (Hawley & Noakes, 1992). 



During the test, oxygen consumption and carbon dioxide productions were 

measured as described above. 

Estimation of physical activity energy expenditure. During the second visit, the 

participants reported to the laboratory in a 2-h post-prandial state. They were 

instructed not to engage in any strenuous physical activity during the preceding 

24 h. All participants completed a 20-min cardiovascular exercise session as part 

of an independent study in progress. The cardiovascular component was 

performed following a 5-min warm-up consisting of 23 min of walking and 2-3 min 

of light jogging. The participants then chose to either complete one 20min 

continuous cardiovascular exercise session or two 10-min sessions on a self-

selected piece of fitness centre equipment. Throughout the exercise session, the 

participants' heart rate, V[O.sub.2] and VC[O.sub.2] were monitored continuously 

using the [K4b.sup.2] portable gas analyser (Cosmed, Italy). Minute-by-minute 

energy expenditure (kJ x [min.sup.-1]) was then determined using the non-

protein caloric equivalents for oxygen. Before each test, the portable gas 

analyser was calibrated using a Hans Rudolph 5530 3-1itre syringe and a two-

point calibration technique, using a 5% C[O.sub.2].sub.1]/16% [0.sub.2] gas 

mixture and fresh air. The analyser outputs were processed to calculate breath-

by-breath ventilation, V[O.sub.2], VC[O.sub.2] and the respiratory exchange ratio 

using conventional equations (Weir, 1990). 

Statistical analysis 

Initially, 127 individuals volunteered to participate in the study. The final sample 

size was 115 because of incomplete heart rate and V[O.sub.2max] for 12 

participants. The initial exploratory data analyses to determine factors that may 

have significantly contributed to the relationship between heart rate and energy 

expenditure included Box plots and scatter plots for all variables (not shown). 

Univariate (means, standard deviations) and bivariate (correlation coefficients) 



summary statistics were then calculated for all variables. 

Based on these analyses, we fitted a mixed model for predicting energy 

expenditure. The factors gender, weight, age and V[O.sub.2max] were modelled 

as fixed effects, and participants as random effects, with three repeated 

measurements of energy expenditure (and fixed heart rate) for each participant. 

In the model, the covariance matrix between the measurements for each 

participant was unstructured and compound symmetry was assumed for the 

covariances between participants. 

A second mixed model was fitted under the rationale that, in certain settings, a 

test of maximal oxygen consumption might be impractical or not available. The 

second model included all the variables and assumptions in the original model 

except V[O.sub.2max]. For inner validation, both models were tested on an 

independent sample of participants (n = 17), who completed 20 min of 

cardiovascular exercise. 

The initial exploratory analyses were performed using the Statistica data analysis 

software system (version 6.1, Statsoft, Southern Africa Inc., 2002). Statistical 

modelling was done with SAS[R] Proprietary Software Release 8.2 (USA). 

Results 

Characteristics of sample used to develop the prediction equation 

The characteristics of the participants are presented in Table I. The participants 

represented a wide range of morphology and fitness: age 19-45 years of age, 

body weight 47-116 kg, percentage body fat 4.8-37.8% and V[O.sub.2max] 27-81 

ml x [kg.sup.-1] x [min.sup.-1]. There were no differences in mean age, weight, 

percentage body fat or V[O.sub.2max] between the participants who underwent 



treadmill testing versus those that underwent cycle ergometer testing. There 

were significant differences in weight, percentage body fat and V[O.sub.2max] 

between the sexes (Table I, P < 0.00001). 

Characteristics of sample used for inner validation 

The characteristics of the participants are presented in Table II. The participants 

in this sample were similar to those used in the original study and represented a 

broad range in body composition. Percentage body fat ranged from 9.4 to 21.6% 

in the men and from 21.6 to 30.6 % in the women. Similarly, there was a wide 

range in the performance data, with V[O.sub.2max] ranging from 38.7 to 73.8 ml 

x [kg-.sup.-1] x [min.sup.-1] in the men and from 34.3 to 49.6 ml x [kg.sup.-1] x 

[min.sup.-1] in the women. 

The participants in both samples were equally matched for age and weight. The 

participants (males and females combined) in the original study were slightly fitter 

(mean V[O.sub.2max] 53.5 [+ or -] 0.5 ml. [kg-.sup.-1]. [min.sup.-1]) than those 

who took part in the validation study (mean V[O.sub.2max] 48.1 [+ or -] 0.5 ml x 

[kg.sup.-1] x [min.sup.-1]); this difference was not statistically significant. 

Prediction equations of energy expenditure from heart rate: Mixed-model 

analysis 

A mixed model was used to derive the following equation for predicting physical 

activity energy expenditure (EE): 

EE = -59.3954 + gender x (-36.3781 + 0.271 x age + 0.394 x weight + 0.404 

V[O.sub.2max] + 0.634x heart rate) + (1 - gender) x (0.274 x age + 0.103x weight 

+ 0.380x V[O.sub.2max] + 0.450 x heart rate) 



where gender = 1 for males and 0 for females. Table III shows the above model 

in a different format. The likelihood ratio test for goodness-of-fit [chi square] = 

262.73 on five degrees of freedom with P < 0.0001. The results of type III tests 

for the fixed effects in the mixed model are presented in Table IV. The degrees of 

freedom for the F-tests were calculated using Satterthwaite's method. 

In Figure 1, the measured energy expenditure is regressed against estimated 

energy expenditure. The correlation coefficient (r) is 0.913, so [R.sup.2] = 83.3% 

of the variation in measured energy expenditure in the sample is explained by the 

model. 

[FIGURE 1 OMITTED] 

A second model, which contained no measure of fitness, was also fitted. The 

final prediction equation for energy expenditure using age, gender, weight and 

heart rate was: 

EE = gender x (-55.0969 + 0.6309 x heart rate + 0.1988 x weight + 0.2017 x age) 

+ (1 - gender) x (-20.4022 + 0.4472 x heartrate - 0.1263 x weight + 0.074 x age) 

where gender = 1 for males and 0 for females. Table V shows the above model 

in a different format. The likelihood ratio test for goodness-of-fit [chi square] = 

360.68 on five degrees of freedom with P < 0.0001. The results of type III tests 

for the fixed effects in the mixed model are given in Table VI. The degrees of 

freedom for the F-tests were calculated using Satterthwaite's method. 

In Figure 2, the measured energy expenditure is regressed against estimated 

energy expenditure. The coefficient of correlation 0.857, so [R.sup.2] = 73.4% of 

the variation in measured energy expenditure in the sample is explained by the 

model. 



[FIGURE 2 OMITTED] 

Independent sample analysis for inner validation 

Data from an independent sample of 17 participants (8 females, 9 males) were 

used to validate both models. Predicted energy expenditure using the first model, 

which included a measure of fitness (V[O.sub.2max]), correlated with measured 

energy expenditure during self-selected cardiovascular fitness training (r = 0.836, 

P < 0.0001; Figure 3). Using the second model for measuring energy 

expenditure, with no measure of fitness, the correlation coefficient was 0.77 (P < 

0.0001) (Figure 4). 

[FIGURE 3-4 OMITTED] 

Agreement 

Because we used a mixed model (with random participant effects), we had to use 

maximum likelihood estimation instead of least squares. The result is that even 

the estimates for the initial sample which was used to develop the equations are 

slightly biased. The bias of the estimates and their random variation for the four 

sets of estimates are summarized in Table VII. The bias is the difference 

between the predicted and the corresponding actual value of energy expenditure, 

and the 95% limits of absolute agreement were calculated as described in 

Atkinson and Nevill (1998). It is interesting to note that the bias in the initial 

sample is on average in the opposite direction to that for the validation sample. 

The fact that the agreement limits become wider down the table is completely 

logical. We believe that these limits are narrow enough for the underlying models 

to be of practical use. 



Discussion 

In this study, we demonstrated that physical activity energy expenditure during 

moderate- to high-intensity exercise may be predicted with good accuracy in a 

group of individuals varying widely in age, fitness and morphology, without the 

need for individual calibration. This study denotes an improvement over existing 

studies in the estimation of physical activity energy expenditure using heart rate 

monitoring. The proposed model (using heart rate, age, weight, gender and level 

of fitness V[O.sub.2max])) accounted for 70% of the variation in observed energy 

expenditure in an independent sample of people completing a self-selected 20-

min cardiovascular exercise session. 

Previous studies (Li et al., 1993; Rutgers, Klijn, & Deurenberg, 1997) have cited 

poor agreement between energy expenditure estimated using heart rate 

monitoring and measured energy expenditure. These prediction equations were 

developed on small samples, not representative of the population to which the 

equation was to be applied. Rutgers et al. (1997) developed a prediction 

equation based on the heart rate and energy expenditure data acquired from 13 

elderly individuals. The authors concluded that the use of heart rate monitoring to 

measure energy expenditure was inaccurate over 3 days of measurement, citing 

large discrepancies between energy expenditure estimation using the individual 

calibration curve and a group curve. Li et al. (1993) also reported poor 

agreement for the estimation of energy expenditure using heart rate monitoring 

between group and individually derived estimates. Once again, this sample was 

relatively small, consisting of only 40 persons. 

The current study represents an improvement over existing studies (Hiilloskorpi 

et al., 1999; Rennie et al., 2001) that used heart rate monitoring to estimate 

physical activity energy expenditure, without individual calibration. Previously, 

Rennie et al. (2001) used the variables that significantly interacted with energy 



expenditure to predict the slope, intercept and the heart rate flex point for 

measured versus predicted physical activity energy expenditure. In that study, 

the variables of sitting heart rate, age, weight and gender were found to have a 

significant impact on the slope, intercept and heart rate flex point. These 

investigators were then able to use the slope and intercept of the linear model to 

place 98% of the participants in their sample in either the same or adjacent 

quartiles for the measured and estimated physical activity levels. Their model has 

implications for physical activity classification in epidemiological models. In the 

current study, we derived linear equations, based on mixed-model analyses. 

These equations yield predictions that correlate significantly with the test sample 

as well as the independent validation sample. 

Previously, Hiilloskorpi et al. (1999) developed an equation to predict energy 

expenditure using the variables of heart rate, age, weight and gender. They 

showed that the mode of exercise, cycling versus running, did not significantly 

affect the final prediction of energy expenditure. We also found that the mode of 

exercise did not affect the estimation of energy expenditure, and therefore 

suggest that the proposed equation may be used for both running and cycling 

activities. During our inner validation study, we even found good agreement with 

other models of continuous activity, such as stationary rowing ergometry and 

stationary stair-climbing activities. 

Hiilloskorpi et al. (1999) did not include any measure of physical fitness or 

V[O.sub.2max] in their prediction equation, citing a need to produce an equation 

for estimating energy expenditure independent of laboratory testing. We found 

that when a measure of the level of cardiorespiratory fitness such as 

V[O.sub.2max] is included, the accuracy of the prediction improved. The 

correlation coefficients (r) of the study sample were 0.913 for the model 

V[O.sub.2max] with and 0.857 for the model without V[O.sub.2max]. The 

increase in variation explained by the model including V[O.sub.2max] is 83.4%-



73.4% = 10%. The correlation coefficients of the validation sample were 0.836 for 

the model with V[O.sub.2max] and 0.77 for the model without V[O.sub.2max]. 

The increase in variation explained by the model including V[O.sub.2max] is 

approximately 10%. It is well known that training results in adaptations in the 

heart rate response to increasing workloads (Meijer, Westerterp, & Verstappen, 

1999; Wilmore et al., 1996). Therefore, it is not surprising that an indirect 

measure of cardiorespiratory fitness improves the accuracy of the prediction of 

energy expenditure from heart rate. This finding is in line with the study of Rennie 

et al. (2001), in which sitting heart rate was found to play a significant role in the 

prediction of energy expenditure from heart rate monitoring. Rennie et al. (2001) 

proposed that resting heart rate when sitting was a useful proxy measurement for 

fitness, since previous studies have found an inverse association between 

resting tachycardia and maximal exercise capacity (Blair, Kannel, Kohl, 

Goodyear, & Wilson, 1989), as well as a positive relationship between regular 

participation in physical activity and lower resting heart rate, independent of age 

(Steinhaus et al., 1988). 

Hiilloskorpi et al. (1999) found that including age in the regression model did not 

significantly improve the variance. This is at odds with the current study, as we 

found that age did contribute significantly to the final mixed model. This 

difference may partly be explained by differences in sample characteristics. 

Hiilloskorpi et al. (1999) acknowledges a relatively narrow age range, with few 

participants older than 50 years or younger than 25 years. In our study, the mean 

age of the 72 men was 31 years (range 19-50 years) and that of the 43 women 

was 30 years (range 22-44 years). In the study of Hiilloskorpi et al. (1999), the 

mean age of the 45 men was 40 years and that of the 43 women was 38 years. 

Their participants were notably older than those in the current study. In addition 

to the age discrepancies between the two studies, there were also discrepancies 

between the fitness of the two samples. In the current study, the mean 

V[O.sub.2max] for the men was 59.2 ml x [min.sup.-1] x [kg.sup.-1] and for the 



women it was 45.7 59.2 ml x [min.sup.-1] x [kg.sup.-1]; in the study of Hiilloskorpi 

et al. (1999), the mean values were 48.5 and 39.5 ml x [min.sup.-1] x [kg.sup.-1] 

for the men and women respectively. These demographic differences may partly 

account for the differences found between the two prediction models. Rennie et 

al. (2001) also found that age impacted in the regression model of physical 

activity energy expenditure from heart rate. It may be argued that the sample 

used to generate the prediction equation comprised a well-trained group of 

individuals, but we feel that they represented a typical fitness centre population. 

Maximal oxygen uptake ranged from 27.0 to 64.1 ml x [min.sup.-1] x [kg.sup.-1] 

in the women and from 38.0 to 81.4 ml x [min.sup.-1] x [kg.sup.-1] in the men. It 

was the intention of the present study to apply this equation to the general 

exercising population and, as a result, our recruitment focused on a local fitness 

centre, amateur running clubs and cycling races. While our average fitness levels 

were unlike those presented in both Hiilloskorpi et al. (1999) and Rennie et al. 

(2001), we have demonstrated that the inclusion of V[O.sub.2max], as a proxy for 

fitness, improves the predictability of our group-based equation. 

While many other studies (Hiilloskorpi et al., 1999; Li et al., 1993; Rennie et al., 

2001; Strath et al., 2000) have used similar approaches to develop prediction 

equations without individual calibration, not all of them (Hiilloskorpi et al., 1999; 

Strath et al., 2000) used an independent sample for inner validation of the 

developed model and, in some cases, did not report inner validation of the 

developed model (Strath et al., 2000) or used the same sample for which the 

original prediction equation was developed (Hiilloskorpi et al., 1999). This may 

lead to elevated levels of agreement between the prediction models and 

measured estimates, due to the homogeneous nature of samples. For example, 

Strath et al. (2000) estimated physical activity during moderate-intensity exercise 

using heart rate monitoring and reported good agreement (r = 0.87) between 

measured and estimated energy expenditure; however, in this study, no inner 

validation was performed on an independent sample of participants. Conversely, 



Rennie et al. (2001) validated a prediction equation for physical activity levels, 

developed on a sample of 789 individuals, on a smaller subset of 97 individuals. 

During this inner validation, 98% of the subset was placed in the same or 

adjacent quartiles during comparison of measured and estimated physical activity 

levels. In the current study, we found good agreement on an independent sample 

of participants. The prediction equation explained 71% of the variance in 

estimated energy expenditure in an independent sample, during self-selected 

cardiovascular exercise training. 

Finally, for practical application the proposed equations represent an 

improvement in the estimation of energy expenditure from heart rate over 

existing equations. They may be used in large population-based studies for 

health purposes. Further research is needed on the simultaneous measurement 

of physical activity energy expenditure and heart rate. Predictive equations that 

estimate energy expenditure for health research and promotion are required for a 

wider variety of activities, particularly for intermittent activity or activity conducted 

at lower intensities. 

Table I. Characteristics of the sample used to 

develop the prediction equation (mean [+ or -] s) 

  

                                      Treadmill 

  

                        Men (n = 22)       Women (n = 24) 

  

Age (years)             30 [+ or -] 7       30 [+ or -] 6 

  

Weight (kg) *           76 [+ or -] 10      66 [+ or -] 11 

  

Percent body fat *    14.5 [+ or -] 4.8   26.8 [+ or -] 5.2 

  

V[O.sub.2max] (ml x 



  [kg.sup.-1] x 

  [min.sup.-1]) *     65.0 [+ or -] 8.6   49.0 [+ or -] 9.7 

  

Maximal heart 

  rate (beats x 

  [min.sup.-1])        189 [+ or -] 9      184 [+ or -] 9 

  

                                  Cycle ergometer 

  

                        Men (n = 50)       Women (n = 19) 

  

Age (years)             31 [+ or -] 6        31 [+ or -] 6 

  

Weight (kg) *           81 [+ or -] 13       62 [+ or -] 6 

  

Percent body fat *    16.6 [+ or -] 4.2    23.1 [+ or -] 5.0 

  

V[O.sub.2max] (ml x 

  [kg.sup.-1] x 

  [min.sup.-1]) *     55.3 [+ or -] 8.3    48.3 [+ or -] 8.1 

  

Maximal heart 

  rate (beats x 

  [min.sup.-1])        187 [+ or -] 11      185 [+ or -] 9 

  

* P < 0.00001, differences between the sexes. 

  

Table II. Characteristics of the sample used 

for inner validation (mean [+ or -] s) 

  

                         Men (n = 9)         Women (n = 8) 

  

Age (years)             29 [+ or -] 8        34 [+ or -] 10 

Weight (kg) *           81 [+ or -] 14       62 [+ or -] 9 

Percent body fat *    14.8 [+ or -] 5.1    26.0 [+ or -] 3.9 

V[O.sub.2max]  

  (ml x [kg.sup.-1] 



  x [min.sup.-1]) *   54.3 [+ or -] 11.4   42.4 [+ or -] 5.4 

Maximal heart 

  rate (beats x 

  [min.sup.-1])        190 [+ or -] 9       178 [+ or -] 15 

  

* P < 0.00001, differences between the sexes. 

  

Table III. The estimates and their standard 

errors for the fixed effects of the model 

including fitness 

  

                        Men                    Women 

  

                            Standard               Standard 

Effect          Estimate     error     Estimate     error 

  

Intercept       -95.7735      9.5734   -59.3954     17.1314 

Heart rate        0.6344      0.0137     0.4498      0.0165 

Weight            0.3942      0.0642     0.1032      0.1166 

V[O.sup.2max]     0.4044      0.0837     0.3802      0.1575 

Age               0.2713      0.1120     0.2735      0.2087 

  

Table IV. Table with type III analysis for fixed 

effects of model including fitness 

  

                         Degrees of 

Effect                    freedom     F-value   P-value 

  

Gender                     2, 109       56.05   < 0.0001 

Heart rate x gender        2, 125     1444.98   < 0.0001 

Weight x gender            2, 100       19.23   < 0.0001 

V[O.sub.2max] x gender     2, 101       14.57   < 0.0001 

Age x gender               2, 101        3.79     0.0258 

  

Table V. The estimates and their standard errors for the 

fixed effects of the mixed model without fitness 

  



                      Men                   Women 

  

                         Standard              Standard 

Effect        Estimate    error     Estimate    error 

  

Intercept     -55.0969     5.5780   -20.4022     7.2318 

Heart rate      0.6309     0.0137     0.4472     0.0165 

Weight          0.1988     0.0619    -0.1263     0.1061 

Age             0.2017     0.1180     0.0740     0.1742 

  

Table VI. Results of type III tests for fixed 

effects of model excluding fitness. 

  

                      Degrees of 

Effect                 freedom     F-value   P-value 

  

Gender                  2, 109       14.43     0.0002 

Heart rate x gender     2, 125     1428.63   < 0.0001 

Weight x gender        2, 99.9        5.86     0.0039 

Age x gender            2, 100        1.55     0.2170 

  

Table VII. Summary of the bias of the energy 

expenditure (in kJ x [min.sup.-1]) estimates 

and their random variation for the four sets 

of estimates 

  

                                         Standard 

Sample       Model               Mean    deviation 

  

Initial      Including fitness   -1.06     7.83 

Initial      No fitness          -5.79     9.85 

Validation   Including fitness    8.19     9.19 

Validation   No fitness           6.27     9.65 

  

Sample          95% limits of agreement 

  

Initial           -16.41         14.28 



Initial           -25.10         13.52 

Validation         -9.83         26.21 

Validation        -12.65         25.19 

  

Note: The bias is the difference between the 

predicted and the corresponding actual value 

of energy expenditure. 
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